“The computer was born to solve problems that did not exist before.”

Random Posts

Saturday, November 13, 2021

Algebra of Sets

Sets under the operations of union, intersection, and complement satisfy various laws (identities) which are listed in Table 1.

Table: Law of Algebra of Sets

Idempotent Laws(a) A ∪ A = A(b) A ∩ A = A
Associative Laws(a) (A ∪ B) ∪ C = A ∪ (B ∪ C)(b) (A ∩ B) ∩ C = A ∩ (B ∩ C)
Commutative Laws(a) A ∪ B = B ∪ A(b) A ∩ B = B ∩ A
Distributive Laws(a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)(b) A ∩ (B ∪ C) =(A ∩ B) ∪ (A ∩ C)
De Morgan's Laws(a) (A ∪B)c=Ac∩ Bc(b) (A ∩B)c=Ac∪ Bc
Identity Laws(a) A ∪ ∅ = A
(b) A ∪ U = U
(c) A ∩ U =A
(d) A ∩ ∅ = ∅
Complement Laws(a) A ∪ Ac= U
(b) A ∩ Ac= ∅
(c) Uc= ∅
(d) ∅c = U
Involution Law(a) (Ac)c = A

Table 1 shows the law of algebra of sets.

Example 1: Prove Idempotent Laws:

  1. (a) A ∪ A = A    

Solution:

Since, B ⊂ A ∪ B, therefore A ⊂ A ∪ A
Let   x ∈ A ∪ A ⇒ x ∈ A  or   x ∈ A ⇒  x ∈ A
∴ A ∪ A ⊂ A
As  A ∪ A ⊂ A and  A ⊂ A ∪ A ⇒ A =A ∪ A. Hence Proved.

  1. (b) A ∩ A = A  

Solution:

Since, A ∩ B ⊂ B, therefore A ∩ A ⊂ A
Let x ∈ A ⇒ x ∈ A  and x ∈ A  
⇒ x ∈ A ∩ A         ∴ A ⊂ A ∩ A
As A ∩ A ⊂ A and A ⊂ A ∩ A ⇒ A = A ∩ A. Hence Proved.

Example 2: Prove Associative Laws:

  1. (a) (A ∪ B) ∪ C = A ∪ (B ∪ C)  

Solution:

Let some x ∈ (A'∪ B) ∪ C
   ⇒  (x ∈ A   or   x ∈ B)    or   x ∈ C
   ⇒   x ∈ A   or   x ∈ B     or  x ∈ C
  ⇒    x ∈ A   or   (x ∈ B    or  x ∈ C)
  ⇒   x ∈ A   or   x ∈ B ∪ C 
  ⇒   x ∈ A ∪ (B ∪ C).
Similarly, if some   x ∈ A ∪ (B ∪ C), then  x ∈ (A ∪ B) ∪ C.
Thus, any 	         x ∈ A ∪ (B ∪ C) ⇔  x ∈ (A ∪ B) ∪ C. Hence Proved.

  1. (b) (A ∩ B) ∩ C = A ∩ (B ∩ C)  

Solution:

Let some x ∈ A ∩ (B ∩ C) ⇒   x ∈ A and x ∈ B ∩ C 
   ⇒   x ∈ A  and (x ∈ B and x ∈ C)  ⇒   x ∈ A  and x ∈ B and x ∈ C
  ⇒   (x ∈ A  and x ∈ B) and x ∈ C)  ⇒   x ∈ A ∩ B and x ∈ C
  ⇒   x ∈ (A ∩ B) ∩ C.
Similarly, if some   x ∈ A ∩ (B ∩ C), then x ∈ (A ∩ B) ∩ C
Thus, any 	         x ∈ (A ∩ B) ∩ C  ⇔  x ∈ A ∩ (B ∩ C). Hence Proved.

Example3: Prove Commutative Laws

  1. (a)  A ∪ B = B ∪ A  

Solution:

To Prove 
      A ∪ B = B ∪ A
      A ∪ B = {x: x ∈ A or x ∈ B}
            = {x: x ∈ B or x ∈ A}   (∵ Order is not preserved in case of sets)
      A ∪ B = B ∪ A. Hence Proved.

  1. (b) A ∩ B = B ∩ A   

Solution:

To Prove 
      A ∩ B = B ∩ A
      A ∩ B = {x: x ∈ A and x ∈ B}
            = {x: x ∈ B and x ∈ A}   (∵ Order is not preserved in case of sets)
      A ∩ B = B ∩ A. Hence Proved.

Example 4: Prove Distributive Laws

  1. (a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)  

Solution:

To Prove 
	     Let x ∈ A ∪ (B ∩ C)  ⇒ x ∈ A or  x ∈ B ∩ C 
      ⇒   (x ∈ A  or x ∈ A) or (x ∈ B and   x ∈ C)
      ⇒   (x ∈ A  or x ∈ B) and (x ∈ A  or x ∈ C)
      ⇒   x ∈ A ∪ B and   x ∈ A ∪ C
      ⇒   x ∈ (A ∪ B) ∩ (A ∪ C)
	  
Therefore, A ∪ (B ∩ C) ⊂ (A ∪ B) ∩ (A ∪ C)............(i)
Again, Let y ∈ (A ∪ B)  ∩ (A ∪ C) ⇒   y ∈ A ∪ B and y ∈ A ∪ C
      ⇒   (y ∈ A or y ∈ B) and (y ∈ A or y ∈ C)
      ⇒   (y ∈ A and y ∈ A) or (y ∈ B and y ∈ C)
      ⇒   y ∈ A    or    y ∈ B ∩ C
      ⇒   y ∈ A  ∪ (B ∩ C)
Therefore, (A ∪ B) ∩ (A ∪ C) ⊂ A ∪ (B ∩ C)............(ii)

Combining (i) and (ii), we get A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). Hence Proved

  1. (b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)  

Solution:

To Prove 
      Let x ∈ A ∩ (B ∪ C)   ⇒   x ∈ A and x ∈ B ∪ C
	⇒  (x ∈ A and x ∈ A) and (x ∈ B  or x ∈ C)
         ⇒  (x ∈ A and x ∈ B) or  (x ∈ A and x ∈ C)
         ⇒   x ∈ A ∩ B or  x ∈ A ∩ C
         ⇒   x ∈ (A ∩ B) ∪ (A ∪ C)
		 
Therefore, A ∩ (B ∪ C) ⊂ (A ∩ B) ∪ (A ∪ C)............ (i)
Again, Let  y ∈ (A ∩ B) ∪ (A ∪ C) ⇒ y ∈ A ∩ B or y ∈ A ∩ C
	  ⇒  (y ∈ A and y ∈ B) or (y ∈ A and y ∈ C)
	  ⇒  (y ∈ A or y ∈ A) and (y ∈ B or y ∈ C)
	  ⇒ y ∈ A and  y ∈ B ∪ C
           ⇒ y ∈ A ∩ (B ∪ C)
Therefore, (A ∩ B) ∪ (A ∪ C) ⊂ A ∩ (B ∪ C)............ (ii)

Combining (i) and (ii), we get A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∪ C). Hence Proved

Example 5: Prove De Morgan's Laws

(a) (A ∪B)c=Ac∩ Bc

Solution:

To Prove (A ∪B)c=Ac∩ Bc
Let x ∈ (A ∪B)c  ⇒  x ∉  A ∪ B			(∵ a ∈ A ⇔ a ∉ Ac)
           ⇒  x ∉  A and x ∉ B
           ⇒  x ∉  Ac and x ∉ Bc
           ⇒  x ∉  Ac∩ Bc
Therefore,  (A ∪B)c ⊂ Ac∩ Bc............. (i)
Again, let x ∈ Ac∩ Bc ⇒ x ∈ Ac and x ∈ Bc
            ⇒ x ∉  A and x ∉ B
            ⇒  x ∉  A ∪ B
            ⇒ x ∈ (A ∪B)c
Therefore, Ac∩ Bc  ⊂ (A ∪B)c............. (ii)
Combining (i) and (ii), we get Ac∩ Bc =(A ∪B)c. Hence Proved.

(b) (A ∩B)c = Ac∪ Bc

Solution:

Let x ∈ (A ∩B)c ⇒ x ∉  A ∩ B    (∵ a ∈ A ⇔ a ∉ Ac)
           ⇒ x ∉  A or x ∉ B
           ⇒ x ∈ Ac and x ∈ Bc
           ⇒ x ∈ Ac∪ Bc
∴ (A ∩B)c⊂ (A ∪B)c.................. (i)
Again, Let x ∈ Ac∪ Bc   ⇒ x ∈ Ac or x ∈ Bc
            ⇒ x ∉  A or x ∉ B
            ⇒ x ∉  A ∩ B
            ⇒ x ∈ (A ∩B)c
∴ Ac∪ Bc⊂ (A ∩B)c.................... (ii)
Combining (i) and (ii), we get(A ∩B)c=Ac∪ Bc. Hence Proved.

Example 6: Prove Identity Laws.

  1. (a) A ∪ ∅ = A  

Solution:

To Prove A ∪ ∅ = A
	         Let  x ∈ A ∪ ∅ ⇒ x ∈ A   or  x ∈ ∅
              ⇒ x ∈ A        (∵x ∈ ∅, as ∅ is the null set )
        Therefore, x ∈ A ∪ ∅ ⇒ x ∈ A   
  Hence,     A ∪ ∅ ⊂ A.
We know that A ⊂ A ∪ B for any set B.
 But for B = ∅, we have A ⊂ A ∪ ∅ 
From above, A ⊂ A ∪ ∅ , A ∪ ∅ ⊂ A ⇒ A = A ∪ ∅. Hence Proved.

  1. (b) A ∩ ∅ = ∅  

Solution:

To Prove A ∩ ∅ = ∅
If  x ∈ A, then x ∉  ∅             (∵∅ is a null set)
Therefore, x ∈ A, x ∉  ∅ ⇒ A ∩ ∅ = ∅. Hence Proved.

  1. (c) A ∪ U = U  

Solution:

To Prove A ∪ U = U
Every set is a subset of a universal set.
   ∴   A ∪ U ⊆ U
    Also,   U ⊆ A ∪ U
Therefore, A ∪ U = U. Hence Proved.

  1. (d) A ∩ U = A  

Solution:

To Prove A ∩ U = A
We know   A ∩ U ⊂ A................. (i)
So we have to show that A ⊂ A ∩ U
Let  x ∈ A ⇒ x ∈ A and x ∈ U        (∵ A ⊂ U so x ∈ A ⇒ x ∈ U )         
   ∴     x ∈ A ⇒ x ∈ A ∩ U
   ∴     A ⊂ A ∩ U................. (ii)
From (i) and (ii), we get A ∩ U = A. Hence Proved.

Example7: Prove Complement Laws

(a) A ∪ Ac= U

Solution:

To Prove A ∪ Ac= U
  Every set is a subset of U
    ∴  A ∪ Ac ⊂ U.................. (i)
We have to show that U ⊆ A ∪ Ac
  Let x ∈ U  ⇒  x ∈ A    or    x ∉  A     
      ⇒  x ∈ A    or   x ∈ Ac    ⇒ x ∈ A ∪ Ac
    ∴ U ⊆ A ∪ Ac................... (ii)
From (i) and (ii), we get A ∪ Ac= U. Hence Proved.

(b) A ∩ Ac=∅

Solution:

As ∅ is the subset of every set
     ∴     ∅ ⊆ A ∩ Ac..................... (i)
We have to show that A ∩ Ac ⊆ ∅
Let x ∈ A ∩ Ac  ⇒ x ∈ A and x ∈  Ac       
     ⇒ x ∈ A  and x ∉  A
      ⇒ x ∈ ∅
    ∴      A ∩ Ac ⊂∅..................... (ii)

From (i) and (ii), we get A∩ Ac=∅. Hence Proved.

(c) Uc= ∅

Solution:

Let x ∈ Uc   ⇔ x ∉ U ⇔ x ∈ ∅
    ∴ Uc= ∅. Hence Proved.     (As U is the Universal Set).

(d) ∅c = U

Solution:

Let x ∈ ∅c ⇔ x ∉ ∅  ⇔ x ∈ U       (As ∅ is an empty set)
	∴ ∅c = U.  Hence Proved.	

Example8: Prove Involution Law

(a) (Ac )c A.

Solution:

Let x ∈ (Ac )c ⇔ x ∉ Ac⇔  x ∈ a
     ∴ (Ac )c =A. Hence Proved.

Duality:

The dual E∗ of E is the equation obtained by replacing every occurrence of ∪, ∩, U and ∅ in E by ∩, ∪, ∅, and U, respectively. For example, the dual of

  1. (U ∩ A) ∪ (B ∩ A) = A is (∅ ∪ A) ∩ (B ∪ A) = A  

It is noted as the principle of duality, that if any equation E is an identity, then its dual E∗ is also an identity.

Principle of Extension:

According to the Principle of Extension two sets, A and B are the same if and only if they have the same members. We denote equal sets by A=B.

  1. If A= {135} and B= {315}, then A=B i.e., A and B are equal sets.  
  2. If A= {147} and B= {548}, then A≠ B i.e.., A and B are unequal sets.  

Cartesian product of two sets:

The Cartesian Product of two sets P and Q in that order is the set of all ordered pairs whose first member belongs to the set P and second member belong to set Q and is denoted by P x Q, i.e.,

  1. P x Q = {(x, y): x ∈ P, y ∈ Q}.  

Example: Let P = {a, b, c} and Q = {k, l, m, n}. Determine the Cartesian product of P and Q.

Solution: The Cartesian product of P and Q is

Algebra of Sets

No comments:

Post a Comment

Post Top Ad

Your Ad Spot

Pages

SoraTemplates

Best Free and Premium Blogger Templates Provider.

Buy This Template